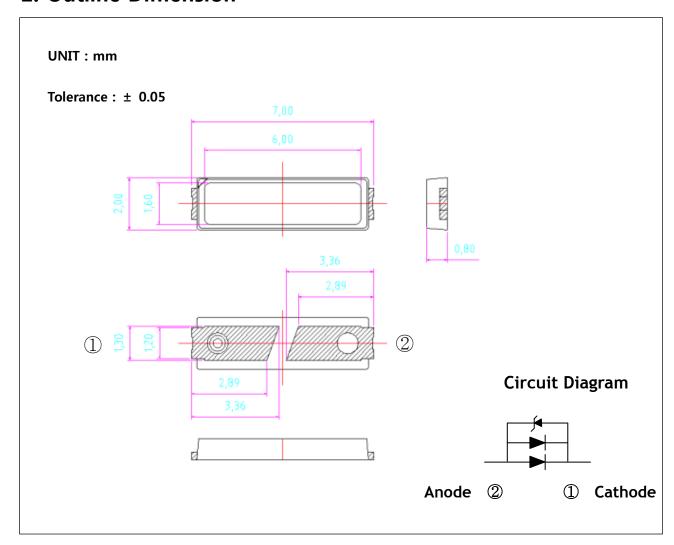
Data Sheet for Product

Part Number: WM72T2F-YR07B-m

The Component corresponds with display's hazardous substance management standard and complies with ▼ RoHS and ▼ Halogen free.

CONTENTS


- 1. Features
- 2. Outline Dimension
- 3. Material Information
- 4. Absolute Maximum Ratings
- **5. Electrical / Optical Characteristics**
- 6. Rank Information
- 7. Characteristic Diagrams
- 8. Reliability
- 9. Soldering Information
- 10. Packaging & Label

1. Features

- SMD Top View Type with Lead Frame Base
- Long Time Reliability
- Package size is 7.0 * 2.0* 0.8t (mm), 2Lead
- Application : TV BLU

2. Outline Dimension

3. Material Information

Thomas	Ch	nip	Pa	ste	Leadf	rame	Phosphor Engan		Mino
Item	LED	Zener	LED	Zener	Reflector	Metal	Phosphor	Encap	Wire
Material	InGaN	Si	Clear	Ag	PCT	Ag plated	Nitride	Silicone	Au
	23014	31	Paste	Paste	. 51	/Cu		550116	7.0

4 Absolute maximum ratings

(Ta=25°c)

Item	Symbol	Absolute Maximum Ratings	Unit
Forward Current	IF	200	mA
Power Dissipation	PD	0.5	w
Reverse Current	IR	50	mA
Pulse Forward Current *1	I FP*1	280	mA
Operating Temperature	Topr	-40 ~ +85	°C
Storage Temperature	Tstg	-40 ~ +100	°C
		Reflow 260 °C,10sec under	200
Solder Temperature	Tsld	Hand 340 ℃ 3sec under	℃
Junction Temperature	Tj	115	°C

^{*1.} Pulse Width \leq 10msec, Duty \leq 10%

5. Electrical/Optical characteristics

(Ta=25°c)

Page: 4/20

		Condition		Value			Unit
Item	Symbol	Conditio	Condition		Тур	Max	Offic
Luminous Intensity *1	Iv	IF=130m	Α	11.5	13.0	-	cd
Forward Voltage *2	VF	IF=130m	Α	2.9	3.2	3.4	٧
Forward Voltage	VFL	IF=1uA		2.0		2.5	
Forward Voltage	VFL	IF=10uA		2.2	-	2.55	V
Chromaticity		VF 420 A	х	0.242	0.260	0.278	-
Coordinate *3	-	IF=130mA	у	0.188	0.212	0.236	-
Reverse Voltage	VR	IR=-5m/	Ą	-0.7		-1.2	V
Viewing Angle	201/2	IF=130m	Α	-	120	-	Deg.
Thermal Resistance	Dil :	Rth,j-s IF=130mA					14.044
(Junction to Lead)	Rtn,j-s				14		K/W
Life Time*4	-	Tj max. 85℃		30K	50K	-	hr
ESD	-	-		5	-	-	KV
Peak Wavelength	Wp	-		435.5		451.5	nm

^{*1.} Luminous Intensity(Flux) measurement allowance is $\pm 10\%$

%Life time: * Min 산출 방법: L50B1, * Typ 산출: MTTF

^{*2.} Forward voltage measurement : ±0.1V

^{*3.} CIE coordinates measurement: ±0.005

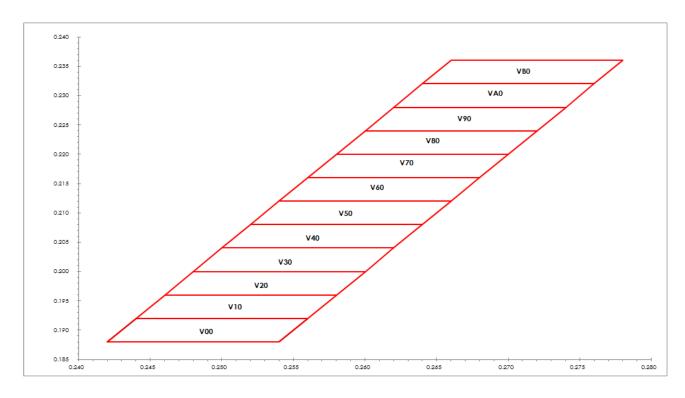
^{*4.} Estimated Time to 50% degradation for initial luminous intensity based on WOOREE LED's Internal test results.

6. Ranks

(1) Luminous Intensity

Code	Condition	Min.	Max.	Unit
В5		11.5	12.5	
C5		12.5	13.5	
D5		13.5	14.5	
E5	IF=130mA	14.5	15.5	
F5		15.5	16.5	cd
G5		16.5	17.5	
Н5		17.5	18.5	
J5		18.5	19.5	

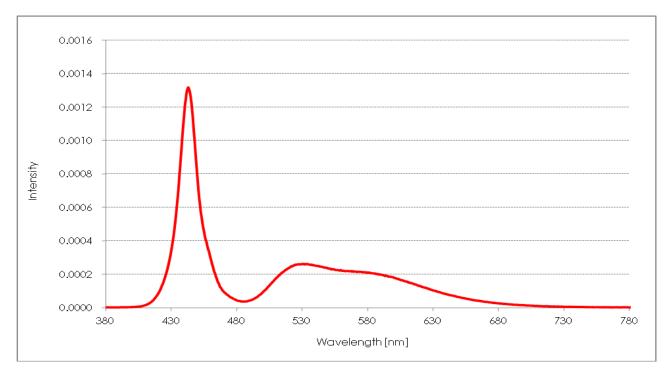
(2) Forward Voltage


Code	Condition	Min.	Max.	Unit
9		2.9	3.1	
1	IF = 130mA	3.1	3.3	v
3		3.3	3.4	

(3) Peak Wavelength

Code	Condition	Min.	Max.	Unit
Α		435.5	440.5	
В	IF = 130mA	440.5	446.5	nm
С		446.5	451.5	

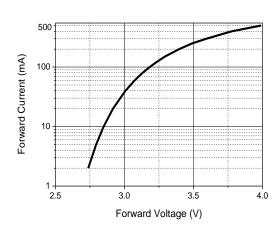
(4) Chromaticity Coordinates Diagram

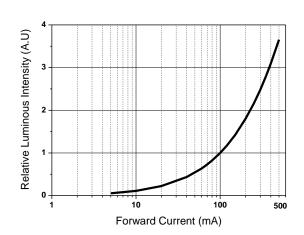

IF=130mA (Ta = 25℃)

(5) Color spectrum

IF=130mA (Ta = 25℃)

Page: 7/20

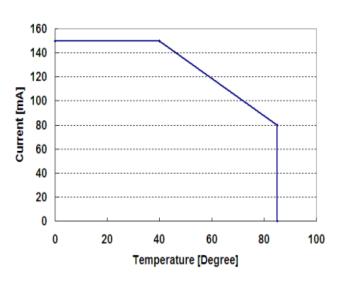


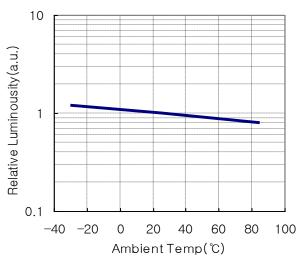

7. Characteristic Diagrams

(1) Forward Voltage vs Forward Current

(2) Forward Current vs Relative Luminosity

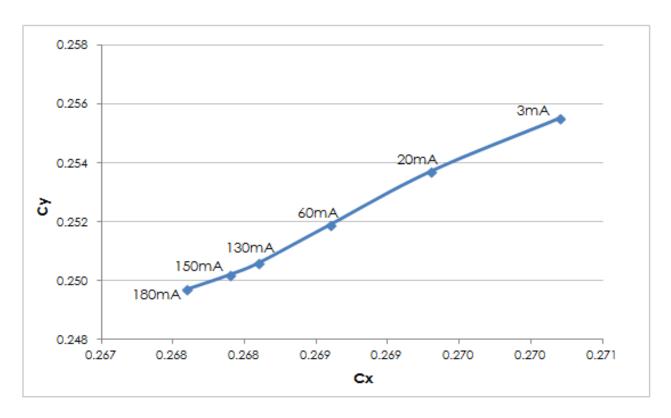
$$(Ta = 25^{\circ}C)$$



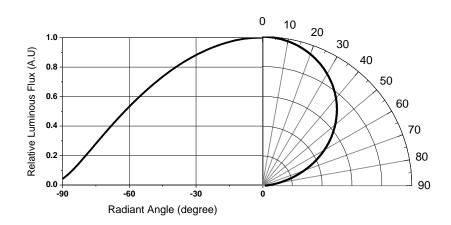

(3) Ambient Temperature vs

(4) Ambient Temperature vs

Relative Luminous Flux



(5) Forward Current vs Chromaticity coordinate


 $(Ta = 25^{\circ}C)$

Page: 9/20

(6) View angle profile

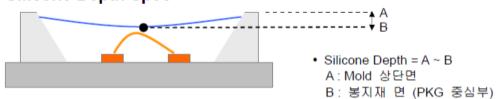
IF= 130mA (Temp: 25°C)

8. Reliability

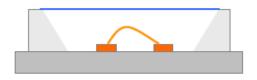
(1) Test items and results

NO	Test Item	Standard Test Method	Test Conditions	Note	Number of Damaged
	Resistance to	JEITA ED-4701	Tsld=260°c, 10sec.		
1	Soldering Heat	300 301	(Pre treatment	2 times	0/20
	(Reflow Soldering)	300 301	30°c,70%,168hrs)		
2	Solderability	JEITA ED-4701	Tsld=245±5°c, 3sec	1 time	0/20
2	(Reflow Soldering)	300 303	(Lead Solder)	over 95%	0/20
		JEITA ED-4701	-45℃ - 125℃		
3	Temperature Cycle	100 105	15min – 15min	310 cycles	0/20
		100 103	Trans time : 3min		
		JEITA ED-4701	-40°C - 100°C		
4	Temperature Cycle		30min - 30min	200 cycles	0/20
		100 105	Trans time : 3min		
5	High Temperature	JEITA ED-4701	Ta=100℃	1000 hrs	0/20
	Storage	200 201	1a-100 C	1000 1113	0/20
6	Temperature	JEITA ED-4701	T2-0E°C DII-0E0/	1000 hrs	0/20
6	6 Humidity Storage 10		Ta=85℃, RH=85%	TOOU ULS	0/20
7	Low Temperature	JEITA ED-4701	To 4000	1000	0./20
7	Storage	200 202	Ta=-40℃	1000 hrs	0/20

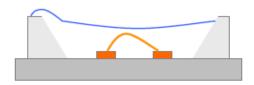
Page: 10/20

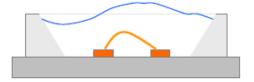

8	Steady State	-	Ta=25℃, IF=162.5mA	1000 hrs	0/20	
	Operating Life			2000 10		
	Steady State					
9	Operating Life of	-	Ta=60°C, IF=162.5mA	1000 hrs	0/20	
	High Temperature					
	Steady State					
10	Operating Life of	-	Ta=85℃, IF=162.5mA	1000 hrs	0/20	
	High Temperature					
	Steady State		T2-0E°C DU-0E0/			
11	Operating Life of	-	Ta=85°C, RH=85%, IF=162.5mA	500 hrs	0/20	
	High Humidity Heat		IF-102.3IIIA			
	Steady State					
12	Operating Life of	-	Ta=-40°C, IF=162.5mA	1000 hrs	0/20	
	Low Temperature					
	On Off Operating		50℃, 95%RH,			
13	On-Off Operating Test	-	IF=162.5mA,	100K Cycle	0/10	
	iest		On/Off each 2sec			
14	Electro-Static	ESD	1500Ω, 100pF	60001	0/20	
14	Discharge Threshold	(HBM)	(Forward/Reverse)	6000V	0/20	

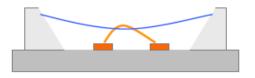
(2) Criteria for judging the damage


ITEM	Symbol	Test Condition	Criteria for Judgement		
II EIVI	Symbol	rest Condition	Min.	Max.	
Forward Voltage	VF	IF = 162.5mA	-	U.S.L. *1) × 1.1	
Luminous Flux	Ф٧	IF = 162.5mA	L.S.L*2)× 0.7	-	

(3) Silicone Depth Judgement


Silicone Depth Spec


Silicone Depth Spec 불량

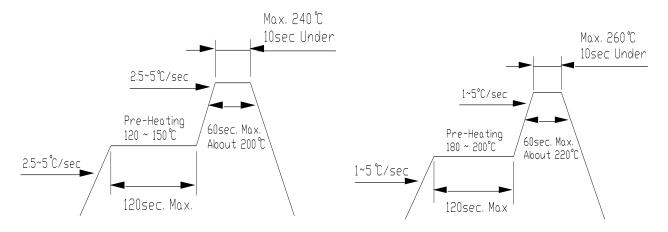

• LED PKG Silicone Depth = 0 um (Flat) 으로 불량 일.

• 봉지재가 Mold 상단면을 넘침으로 불량 임.

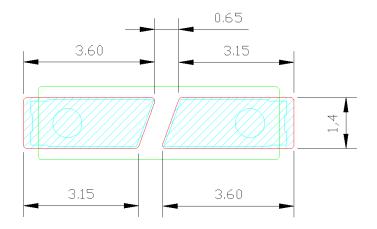
• 봉지재의 중심 또는 일부가 Mold 상단면 보다 돌출 되므로 불량 임.

• Wire가 봉지재 위로 노출되어 불량 임.

9. Precautions to taken


(1) Recommend soldering conditions

	Reflow Soldering	Hand Solder	ing(Lead Part)	
Pre-heat	Lead Solder	Lead Free Solder	Temperature	Max. 340℃
Pre-heat time			Soldering	Max. 3sec
Peak temperature	120~150℃	180~200℃	Time	(only one time)
Soldering Time	120sec	120sec. Max.		
Condition	Max. 240°C	Max. 260°C		
	Max. 10sec	Max. 10sec		


Temperature-profile

<Lead Solder>

<Lead-free Solder>

<Recommended soldering pad design>

Unit: mm

Solder Land

(2) Moisture Proof Package

When moisture is absorbed into the SMT package it may vaporize and expand during soldering. There is a possibility that this can cause exfoliation of the contacts and damage to the optical characteristics of the LEDs. For this reason, the moisture proof package is used to keep moisture to a minimum in the package. The moisture proof package is made of an aluminum moisture proof bag. A package

of a moisture absorbent material(silica gel) is inserted into the aluminum moisture proof bag. The silica gel changes its color from blue to pink as it absorbs moisture.

(3) Storage

[Storage conditions]

Before opening the package

The LEDs should be kept at 30°C or less and 90% RH or less. The LEDs should be used within a year. When storing the LEDs, moisture proof packaging with absorbent

material(silica gel) is recommended.

After opening the package

The LEDs should be kept at 30°C or less and 70% RH or less. The LEDs should be

WM72T2F-YR07B-m

Page: 14/20

soldered within 168 hours(7days) after opening the package. If unused LEDs remain, they should be stored in moisture proof packages, such as sealed containers with package of moisture absorbent material(silica gel). It is also recommended to return the LEDs to the original moisture proof bag and to reseal the moisture proof bag again.

If the moisture absorbent material(silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.

Baking treatment : more than 24hours at 65±5℃

WOOREE E&L part's electrodes and leadframes are silver plated copper alloy. The silver surface may be affected by environments which contain corrosive substances.

Please avoid conditions which may cause the LED to corrode, tarnish or discolor. The corrosion or discoloration might lower solderability or might affect on optical Characteristics.

Please avoid rapid transitions in ambient temperature, especially in high humidity environments where condensation can occur.

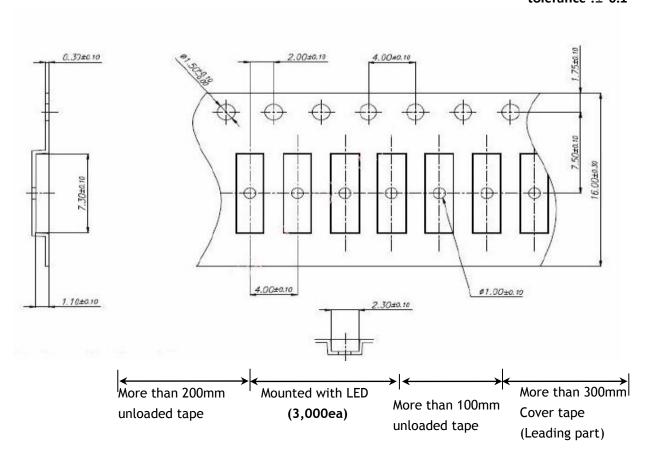
(4) Heat Generation

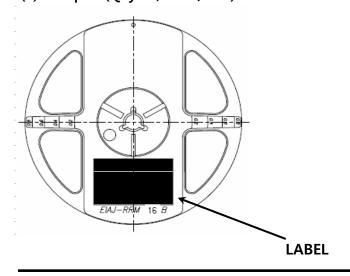
Thermal design of the end product is of paramount importance. Please consider the heat generation of the LED when making the system design. The coefficient of temperature increase per input electric power is affected by the thermal resistance of the circuit board and density of LED placement on the board, as well as other components. It is necessary to avoid intense heat generation and operate within the maximum ratings given in the specification.

The operating current should be decided after considering the ambient maximum temperature of LEDs.

Page: 15/20

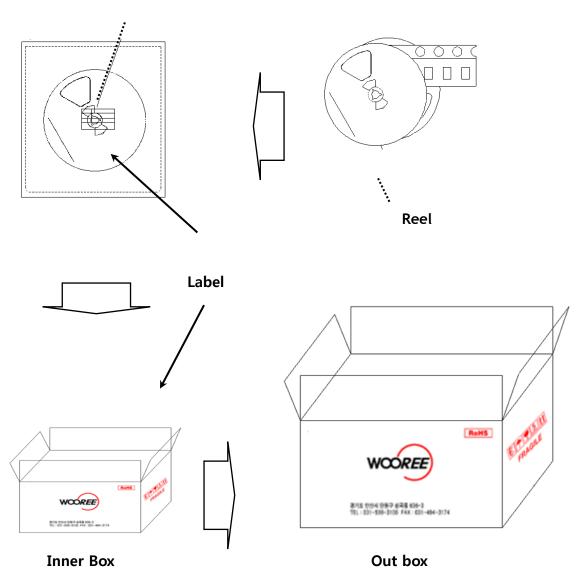
(5) Handling Precautions


When handling the product, touching encapsulant with bare hands will contaminate its surface that could affects on optical characteristics. In the worst cases, excessive force to the encapsulant by hand might result in catastrophic failure of the LEDs due to wire deformation and/or breakage.

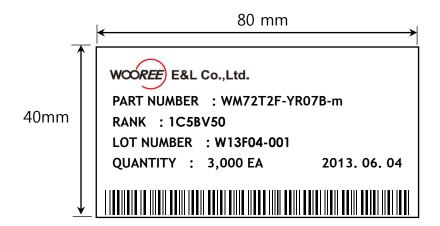

10. Packing & Label

(1) Taping part

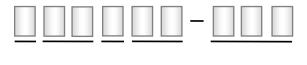
unit : mm tolerance :± 0.1


(2) Reel part (Q'ty: 3,000ea/Reel)

WOOREE E&L Co.,Ltd.

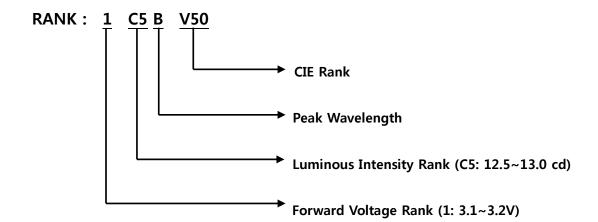

(3) Boxing

Shield Bag (with Silica gel)



Вох	Dimension (mm)	Reel/Box	Quantity/Box
Inner box	220 x 125 x 261	10 Reel max.	60,000 ea
Out box	383 x 228 x 267	30 Reel max.	90,000 ea

(4) Label Information



(5) Lot Number

- 1 2 3 4 5
 - **①** WOOREE LED Initial
 - ② Year (13 for 2013, 14 for 2014)
 - 3 Month (A for Jan., B for Feb., ..., N for Dec.)
 - **4** Day (01 for 1,....31 for 31)
 - **S** WOOREE LED Product Running Number

(6) Rank Code description

